Nikkor AF 20mm f/2.8 D : Review

Introduction

After a very long hiatus here’s my newest lens review, of the Nikkor AF 20mm f/2.8 D!
Many things have happened in my life recently, both personally and professionally, and because of the lack of time for “geeky” things such as testing and writing lens reviews, I have been spending most of my free time with my family – and obviously – taking photos of them. My favorite subjects have been my son and my wife 🙂

This was a big change in my “photography life”. Suddenly I wasn’t getting up early and spending an entire day outside taking landscape photos anymore, or simply walking around doing street photography or shooting insects… Now my priorities were two: portraits of my family and losing weight, well, not me but my photography gear.
I started the slimming program by dropping the heavy f/2.8 zooms and slowly substituting them with primes. At that time I also had a zoom lens which I liked a lot, the Nikkor AF-S 16-35mm f/4 G ED VR, which I regret not having the time to write a review of, and that had to go too. It wasn’t as heavy as the others, but it was nevertheless a long lens (and a speciality one which I used exclusively for landscapes). The slimming process went far: I still had the Nikon D700, one cheap zoom and two primes, but I added one new system to my kit: Micro Four Thirds, in my case an Olympus E-M10, two primes and the wonderful Olympus M.Zuiko 12-40mm f/2.8 PRO zoom lens. I spent several months shooting and filming with the Olympus, and the Nikon was sitting at home unused most of the time.
But everytime I decided to shoot with the D700, mostly portraits, it was magic. I simply could not abandon the full-frame format. Then I thought that it didn’t make much sense to keep shooting with the 12-40mm, since it was a lens that wasn’t very well balanced with the E-M10, and sold it for a new Olympus M.Zuiko 17mm f/1.8. Great lens, loved the rendering and AF speed, very compact and well built.

But I loved the look of full-frame… After some time I took the radical decision of selling all the Olympus gear and spent the money on the mighty Nikkor AF-S 58mm f/1.4 G lens. And what a treat is was! This is another lens I regret not writing a review of. It’s magic. I made so many beautiful portraits of my family with this lens, that I’m certainly we’ll admire them in the years to come. And now I don’t have this lens anymore, and why? Because I have migrated to a Sony A7s full-frame mirrorless camera, that’s why, and unfortunately there wasn’t any adapters that could AF with the 58mm, at least reliably. What a shame, I had to replace it somehow…

… but enough with the story and let’s get back to the Nikkor 20mm review!

This is a lens I never thought of buying when I had my D700, but now that I had a very small camera I needed small lenses, either native or adapted. Due to the lack of cheap ultra wide angle lenses for the Sony system, I had to look elsewhere for an adapted lens, and I saw the 20mm as a lens I was curious to try. So there it was at home, and even with the adapter it makes a nice combo with the Sony A7s:

This lens was announced in 1994 and is still being produced today, despite the release of the new Nikkor AF-S 20mm f/1.8 G and the now “ancient” aperture ring. It’s still the smallest ultra wide lens for the Nikon mount an can be bought cheaply today on the used market for about 300€.

Technical Specifications

Focal length 20mm
Maximum aperture f/2.8
Minimum aperture f/22
Field of view 94 degrees (on FX)
Weight 270g
Dimensions 43 x 69mm (46 x 69mm at minimum focus distance)
Optical construction 12 elements in 9 groups
Aperture blades 7, straight
Filter diameter 62mm
Minimum focus distance 25cm
Hood HB-4, optional
Mount F

Mechanical Characteristics

Zoom ring n/a
Focus ring Plastic with rubber finish, with infinity stop
Focus throw 93 degrees
Focus motor No
Optical stabilizer No
Front element rotation while zooming n/a
Front element rotation while focusing No
Internal focusing No
Lens extension while focusing Yes, 3mm
Lens extension while zooming n/a
Maximum magnification 1:8.3

Handling

The lens is very well built, and despite being all plastic on the outside it gives a very solid, dense feeling due to its weight and compactness. Since it’s so small even with the adapter, handling it with the Sony A7s is very easy and manual focus is nice for an AF lens. There’s a generous focus throw and, being an ultra wide lens, focusing is very easy. A nice bonus is the hard stop at infinity, just like the old AI lenses!
The front element doesn’t rotate while focusing, so using polarizers is not a problem.

Resolution

For the resolution test I shot two different targets, one sitting around 1 meter from the lens, and the other at “infinity”.
In both results, the first column shows a crop of the image center, and the second column shows a crop of the extreme corner. Each row represents an aperture setting, from maximum to f/22 in full stops.
Here are the results, first at the close target:

The center resolution is already on its maximum value, which I was kind of expecting from my experience with other old lenses, and only drops at f/22 due to diffraction. The corners, though, are a completely different matter; they start rather bad at f/2.8 and aggravated with huge vignetting, and resolution doesn’t improve much at f/4. Only at f/5.6 one starts to see sharp corners on full frame, but the very best apertures are f/8 and f/11 for homogeneous resolution corner to corner. Once again this is in line with the resolution characteristics with other old wide angle lenses, such as the 24mm and 28mm f/2.8 lenses.
When the target is located far away, the result is a little different:

The main difference is what happens at f/2.8 in the center. It’s very soft, and the corners are equally bad. But by f/4 there’s a big jump in quality in the center, despite the corners still being a little soft. Afterwards the behavior resembles what happened with the close target, but resolution in the corners is still rather soft even at f/5.6. Then, from f/8 and until f/16 the corners become very sharp and overall resolution only drops at f/22 because of diffraction.
Overall, this is still a great performance for an ultra wide angle lens and the resolution results are great for landscape photography when stopping down the aperture is the norm.

Distortion

Not a brick wall, but this image allows to see the distortion characteristics of the lens:

The lens has very visible barrel distortion along with a mustache type characteristic, producing a very wavy shape to horizontal lines, and because of that should be used with care in architecture photography, especially regarding horizontal lines. For landscapes this is not very important unless there are things like horizon line on seascapes, and in this case the distortion characteristic might be hard to fix, but using the appropriate profile for this lens in post-processing does the trick with one click.

Vignetting

Vignetting is very strong at f/2.8 and affects the entire frame, making the center lose about 1/3 stops of light, but the corners get really dark. At f/4, falloff improves drastically but the corners are still very dark. Vignetting never goes away afterwards until f/16, and only at f/22 there’s finally an improvement. However, vignetting is very easy to correct in post-processing and shouldn’t present a real issue in most circumstances.

Chromatic aberrations

I couldn’t force the appearance of CAs whatever I did. Even at f/2.8 I could not see any traces of fringing, it’s really great.

Coma

Coma was tested using a LED source, at home in a dark room.
The three columns in the following image show the result at the center, APS-C corner and full-frame corner, respectivelly:

As expected for a relatively fast ultra wide angle lens, coma is very high in the corners at full aperture. This is normal and difficult to correct during manufacturing, and is impossible to fix in post-processing. In this matter, the lens disappoints for applications like astrophotography where negligible coma distortion is crucial.

Flare

For the flare test, I started shooting directly against the sun, then placed the sun at the corner and finally made shot with the sun just outside the frame.

Shot directly against the sun.
Shot with the sun placed at one corner of the frame.
Shot with the sun just outside the frame.

The lens has a very good resistance to veiling flare which is important to keep contrast high. The problem is that if the sun is in the frame or in the proximity, the internal reflections of light will be easily visible in the pictures, as tiny as those reflections may be. This characteristic is normal for old wide angle lenses, and the more the angle the worse ghosting becomes.
In conclusion, the best thing to do is leaving the sun at a safe distance from the frame.

Bokeh

This is a wide focal lens with 7 straight blades, thus bokeh has to be the last thing you think about when buying this lens.
This test is based on a defocused picture of the city lights and getting crops from the center and corner at three different apertures.

The lens produces a reasonable bokeh wide open, not in this test because of the very visible accentuated edges, but when the background has lower contrast areas. In real life shots, bokeh is not very distracting, though. Stopping down immediately shows polygonal shapes which are the result of the straight type diafragm blades. However, this is in line with every ordinary wide angle lenses I tested.

Macro/Close-up

This lens employs CRC (Close-Range Correction) technology by means of floating elements that help correcting optical problems when focusing very close. As a result, this lens has a very sharp center wide open at the minimum focus distance. This allows to focus as close as 25 centimeters from the front plane, resulting in a maximum magnification ratio of 1:8.3. It’s not bad, but I’ve seen much better from other (modern) wide angle lenses.
I shot a Sony battery and this is the entire frame at the minimum focus distance:

Summary

Build quality 7 All-plastic on the outside but very solid, dense feeling
Handling 7 Easy manual focusing and aperture selection with the ring
Resolution 8 Very good resolution for an ultra wide angle lens, but wide open good only at short distances
Distortion 5 Complex barrel and mustache distortion, not suitable for architecture
Vignetting 4 Very strong wide-open, and always there afterwards
Chromatic aberrations 10 Perfect, no issues here
Coma 7 Very noticeable in the borders wide open, well controlled afterwards
Flare 7 Contrast is always high but ghosts are too easy to catch with the sun nearby
Bokeh 4 Just acceptable wide-open
Overall 65% A sharp and very compact ultra wide angle prime lens, still a great buy today especially on the used market for mirrorless cameras

Samples

Here are some samples of pictures I made with this lens. Settings: native JPEG, picture control set to Standard mode, no post-processing applied except reducing to 600 pixel width.

20mm, f/8.0, 1/125s, ISO 100 – Click here for original
20mm, f/8.0, 1/200s, ISO 100 – Click here for original
20mm, f/5.6, 1/640s, ISO 200 – Click here for original
20mm, f/11, 1/60s, ISO 1600 – Click here for original
20mm, f/2.8, 1/60s, ISO 200 – Click here for original
20mm, f/2.8, 1/60s, ISO 320 – Click here for original
Advertisements

Nikkor AF-S 70-200mm f/2.8 G II ED VR N : Review

Introduction

The 70-200mm f/2.8 telephoto lenses have long been a first choice for social events and fashion photographers. The combination of versatile focal lengths, fast aperture, good target isolation, very fast autofocusing and high build quality, are qualities that few lenses can afford to have and absolutely needed for the professional who cannot go through the risk of getting less than acceptable results.
In this review I will describe my own experience, as a pure amateur, with the wonderful Nikkor AF-S 70-200mm f/2.8 G II ED VR, also known as “VR II” (which incidentally has Nikon’s Vibration Reduction implementation version II). Having previously reviewed the also professional level Nikkor AF-S 24-70mm f/2.8 G ED lens of the “holy trinity” of zoom lenses from the current Nikon lineup, I can say that the 70-200mm feels even more rugged, perhaps due to having thicker metal in its construction, and the number of optical elements inside contribute to a lot of weight, 1540 g. By the way, I’ll be reviewing it with the D700 full-frame DSLR, which even if it’s a big camera with a nice round grip, it still benefits a lot with the addition of the battery grip for better balance with the lens for long periods of time. Now here’s how the D700 combines with the 70-200mm, without the battery grip:

This was a very welcome addition to Nikon’s lineup, especially in the forum communities, since the previous version of the 70-200mm was known for producing high amounts of vignetting and lack of sharpness in the corners, especially at the long end. When this lens was released, the alternatives on the market were the Sigma AF 70-200mm f/2.8 DG EX HSM II and the Tamron SP AF 70-200mm f/2.8 Di LD Macro. These lenses were good, had their own strengths but had a lot of weaknesses too, but of course they cost much less than the Nikkor. The Sigma was a fast focusing lens but had problems with chromatic aberrations and obvious lack of sharpness at the long end; the Tamron was the opposite, having great optical qualities but a very weak AF motor which was far from great for action, although it was known to be great for portraiture and could do very good closeups. But the best option was to opt for a used “VR I”, or even Nikon’s old AF-S 80-200mm f/2.8 D. Nowadays, the third-party makers put a lot of effort in their designs and the Sigma released a new version with OS (Optical Stabilization) and many improvements that contribute to better results, especially at the long end; Tamron, on another hand, produced an excellent lens with VC (Vibration Compensation) and USD (Ultra-Sonic Drive) motor. Both lenses finally seem to be good alternatives to the Nikkor.
The Nikkor AF-S 70-200mm f/2.8 G II ED VR is a complex design with no less than 7 ED elements to correct optical aberrations, and 1 Nano Crystal Coat to deal with flare and ghosting. The lens front element doesn’t rotate while focusing, so using a polarizer filter is not a problem. Typical for these kind of lenses, zooming is internal and therefore the length of the lens remains constant through the entire range. As said before, this lens introduces Vibration Reduction version II which is 4-stop effective, according to Nikon. The VR has two working modes – Normal and Active – Normal mode is best for static subjects and compensates for small low frequency movements, and Active mode is best for action where the lens tries to correct high frequency shakings in addition.
At about 1899€ today, this is a very expensive lens and still everybody have been raving about it. We’ll try to find out why.

Technical Specifications

Focal length 70 – 200mm
Maximum aperture f/2.8
Minimum aperture f/22
Field of vision 34 – 12 degrees (on FX)
Weight 1540 g
Dimensions 206 x 87mm
Optical construction 21 elements in 16 groups (7 ED elements, 1 Nano Crystal Coat element)
Aperture blades 9
Filter diameter 77mm
Minimal focus distance 140cm (104cm from the front element)
Hood HB-48, petal-shaped
Mount Nikon F

Mechanical Characteristics

Zoom ring Metal with rubber finish
Focus ring Metal with rubber finish, no infinity stop
Focus throw ? degrees
Focus motor Silent Wave Motor, allows full-time manual focus override
Optical stabilizer Vibration Reduction (version II), up to 4 stops capability
Front element rotation while zooming No
Front element rotation while focusing No
Internal focusing Yes
Lens extension while focusing No
Lens extension while zooming No

Handling

The Nikkor is a chunky piece of metal and it’s front-heavy with the D700, which is a heavy camera by itself, but balance can be restored by adding a battery grip, and shooting with this lens result in being very pleasant that way – I got only a bit of back pain after shooting and carrying the combo for about 8 hours at the races (the longest I shot with it so far). The zoom ring is thin and lightweight, isn’t damped and feels like rubbing metal against metal, but turns around very fast which is excellent for action photography where framing and getting the shot at the right moment is crucial. The focus ring feels a little heavier but allows for quick adjustments on-the-fly, since the lens supports manual focus override after auto-focusing. Speaking about focusing, the lens employs two different modes which are selectable via a switch on the side of the lens barrel – A/M and M/A. These namings may sound weird at first, and still sound strange after – A/M is a new mode that takes longer to recognize that the lens entered manual focus override mode (it takes a little more focus ring turning around by the user), which is useful for protection from accidental hits on the focus ring; M/A, in its turn, is the conventional auto-focus mode with manual override (it instantly enters manual mode at the slightest hit on the focus ring). The lens has a focus limiter for 5 meters which is nice to have when shooting outdoors for even faster AF. Speaking about speed, this lens is even faster focusing than the Nikkor AF-S 24-70mm f/2.8 G ED, especially indoors in low light, and is also the most accurate of all lenses I have used until today. As long there exist the slightest contrast to grab on, the lens nails it, and low light AF performance is really impressive. According to other tests, this is probably the most eye-catching characteristic compared to the other current third-party offers. Another eye-catching characteristic, but on the negative side, is the well known focus “breathing” when shooting close distance objects, which result in less-than-expected magnification. This can be disappointing, for instance, to the wedding photographer who needs to take that close shot of the wedding rings and other small details. Personally I prefer to use a macro lens for that kind of work, since probably the magnification without the “breathing” issue would not be acceptable anyway.
The lens includes a non-removable collar and a removable tripod foot adaptor. The collar can be turned around with ease after loosening the knob, and the tripod foot can be removed also from loosening its knob and sliding it out. The tripod foot is all metal and doesn’t flex. The Nikkor has a short petal-shaped hood which protects the lens but not so much from the Sun rays and should be more effective.

Resolution

For the resolution test I shot the 5 Euro bill in the studio. Focus was achieved using Live View to avoid auto-focus imprecisions and to compensate for an hypothetical field curvature. They are followed by a long distance test shot of a target placed at around 100 meters.
The first column shows a crop of the image center, the corner crop is on the second column and the third column shows a crop of the extreme corner. Each row represents an aperture setting, from maximum to f/22 in full stops. Here are the results:

70mm

At 70mm the center resolution is already excellent right from f/2.8 and only deteriorates at f/16 due to diffraction, and the DX corner resolution follows the same behavior. The FX corners are much less sharp at f/2.8 but reach very good levels already at f/4, and by f/5.6 they reach excellent levels.

At long distances, the results are much better and reach already excellent levels at f/2.8 in the FX corners. Stopping down does nothing to improve resolution and only clears the vignetting.
The lens is excellent at 70mm, especially at medium to long distance shots where every bit of the images reach impressive resolution levels.

105mm

Just like at 70mm, by 105mm the resolution at the center and DX corners is excellent already wide-open and only drops a little at f/16. But now the FX corners are already very good wide-open at reach excellent figures by f/4.

There’s really nothing to say here in this test. The lens performs brilliantly at 105mm like in the previous test.
This is probably the lens sweetest spot, but let’s see what happens at 200mm below.

200mm

Surprisingly, where this is typically the weakest spot of all 70-200mm lenses, here at 200mm and on the short distance test the FX corner sharpness is even closer to the center level than on the previous test, and reach top quality levels. The FX corner is only a hair less sharp and is affected by some vignetting, but nonetheless this is an impressive performance. The resolution figures only lose a bit of “bite” by f/22.

The results from the long distance test reflect those at short distance – the FX corner is only marginally less sharp at f/2.8 and there’s some vignetting as well.

I didn’t expect this level of performance from a 70-200mm f/2.8. Usually the FX corners lack a bit of sharpness, have vignetting, and have a weak spot at 200mm where normally only the center portion of the frame is on a good level. This is not a problem most of the time because the subjects tend to be centered in the frame. But the Nikkor performs so well that it is now clear why it’s often compared with primes by users in forum communities. I may go a step further and say that few primes perform as good as this zoom lens, unless you’re comparing it to a 1899€ prime lens (but you’d lose the versatility of the zoom).

Distortion

For the distortion test I shot a brick wall, again:

70mm

105mm

200mm

The lens produces a bit of barrel distortion at 70mm which is negligible in real-world photos, and changes to pincushion at 105mm but also on a small amount and hardly visible. At 200mm the pincushion distortion level increases but now by much.

Vignetting

In this test I shot a white wall at home using tungsten white balance and setting exposure manually.

70mm

At 70mm, vignetting is very strong wide-open and much less so at f/4, before disappearing at f/5.6.

105mm

At 105mm, vignetting is strong at f/2.8 and decreases a lot at f/4. At f/5.6 it’s non existent.

200mm

At 200mm, vignetting reaches the weakest spot and is at a very strong level by f/2.8 which darkens the entire frame. At f/4 it’s still very strong but affects only the corners, and by f/5.6 it decreases a lot and practically disappears at f/8.

Chromatic aberrations

For this test I shot a car roof from above, on a very sunny day early in the afternoon.

70mm

200mm

The Nikkor employs no less than 7 ED (Extra-low Dispersion) elements to reduce chromatic aberrations and the lens performs remarkably in this department. Aberrations are negligible at all apertures on every tests I did, including the always challenging shot of foliage against the sun. This is an excellent performance for any fast zoom lens.

Coma

Coma is an important requirement in astrophotography and usually affects the corners of most lenses. Lenses that are affected by coma produce comas (hence the name) instead of bright light points in dark backgrounds. One way to test coma is using a LED source of light at home in a dark room.
I put the light source at the center (first column), corner and extreme corner of the frame (second and third columns, respectively), at maximum aperture and stopped down.

70mm

200mm

Like most telephoto zooms, the Nikkor isn’t much affected by coma and the only distortions visible are in the halos around the center, where they stretch the more the points are closed to the borders, but the points themselves remain perfectly circular. Curiously, those halos seem to stretch a little more at f/4 than at f/2.8 on the FX corner.

Flare

In this test I shot the top of a small building against the sun, to see if I could get any flare vestiges. I started shooting directly against the sun, then placed the sun at the corner and finally made a shot with the sun just outside the frame.

Shot directly against the sun.
Shot with the sun placed at one corner of the frame.
Shot with the sun just outside the frame.

Typical for any telephoto zoom lens, the Nikkor is affected by flare in every situation with the sun nearby. Despite having one Nano Crystal Coat element to reduce flare and ghosting, flare affects negatively the images when the sun is at the center of the frame, reducing the overall contrast. When the sun is at one corner, the multiple internal reflections of the sun rays are clearly visible towards the opposite corner, and the overall contrast of the image is still affected badly. Finally, when the sun is just outside the frame, the overall contrast returns to normal levels but there’s still few internal reflections visible in photos.
Notice that this test was made without the supplied hood, but even with the hood there’s still few reflections visible in pictures but the overall contrast certainly benefits with its use. Perhaps performance with the hood on could be better if it were a bit longer, just like the one of the “VR I” version lens.

Bokeh

Thanks to the 9 aperture blades, we can expect circular out of focus highlights from this lens. I took a defocused picture at the widest aperture of the city lights and got crops of the center, corner and extreme corners. The test was repeated for the subsequent two stops.

70mm

200mm

Bokeh from this lens is perfectly circular at the center and suffers from the cats eye distortion in the extreme corners, and the out of focus highlights are a bit nervous on the inside at 70mm but get perfectly smooth at 200mm, at f/2.8. By f/4, we start to see some polygonization which is more visible at 200mm, but still the edges aren’t accentuated and produce smooth transitions and backgrounds that are soft and not distracting at the longest focal length. This characteristic doesn’t change much at f/5.6.
All in all, the lens has superb bokeh characteristics (for a zoom lens) which are surely amongst the best in class.

Macro/Close-up

The Nikkor was capable to focus as close as 140 centimeters from the sensor plane, or 104 centimeters from the front element. I shot an 1 Euro coin and this is what to expect at the minimum focus distance:

70mm

200mm

This shows clearly that the lens maximum magnification is too small for closeup work, due to the well known issue of focus “breathing” in this very lens.

Image stabilization

This lens introduced Nikon’s new version of VR (Vibration Reduction), which is advertised as giving an advantage of 4 stops. This means that at 200mm, one can shoot at speeds as slow as 1/13 seconds.
To test it, I shot the back of a street lamp from my window. The first column shows crops of the subject shot with VR off, and the second column shows them with VR on for comparison. Here are the results at 200mm starting at 1/200 s:

The results shows clearly that the VR II works as advertised and better, resulting in sharp images at 1/13 seconds with ease, and adding a battery grip I managed to shoot sharp pictures at 1/6 seconds, benefiting with the improved balance, though the percentage of keepers suddenly decreased. Of course, one has to build some technique to hold the camera and lens steady, so that the benefits of this technology can be applied. The image taken at 1/6 s is softer but that’s the result of shooting at f/20 which is greatly affected with diffraction. Surely VR version II works as advertised, and this versatility is amazing as long as your subject remains perfectly static.

Summary

Build quality 10 Built like a tank with tight precision
Handling 10 It’s obviously heavy but has perfect ring placement, and AF is extremely fast and accurate in every situation even in sports and very low light, catching the least amount of contrast to lock on
Resolution 9 Almost perfect, the only drawback is not so good FX corners wide-open at 70mm
Distortion 9 Very small amounts of barrel distortion at the wide end and pincushion thereafter, but not noticeable in most pictures
Vignetting 8 Very strong at widest apertures especially at 200mm
Chromatic aberrations 10 Never encountered issues, even on most challenging situations
Coma 9 Halos can be found on FX corners but they don’t affect negatively applications like astrophotography
Flare 3 Very weak resistance against flare and ghosting, the supplied hood isn’t very effective and should be longer
Bokeh 8 Very smooth at widest apertures, but gets polygonal early by stopping down
Overall 84% A fantastic lens and a truly reliable workhorse that delivers beautiful results, and the only disappointing features are weak flare resistance and the focus breathing issue

Samples

Here are some samples of pictures I made with this lens. Settings: simple RAW convertion with Nikon View NX2 at default settings (unless noticed), picture control set in-camera to Landscape mode, no post-processing applied except reducing to 600 pixel width.

125mm, f/4.0, 1/1600s, ISO 200
170mm, f/4.0, 1/2500s, ISO 200
155mm, f/4.0, 1/1250s, ISO 200
150mm, f/3.5, 1/2500s, ISO 200, out of camera JPEG
165mm, f/2.8, 1/4000s, ISO 200, out of camera JPEG
70mm, f/2.8, 1/640s, ISO 200, out of camera JPEG

Tamron SP AF 90mm f/2.8 Di Macro : Review

Introduction

The Tamron SP AF 90mm f/2.8 Di Macro is a highly popular lens amongst amateur photographers looking forward to take themselves into the realm of macro photography. I will be showing you the results of my own tests on a Nikon D700 full-frame DSLR. This lens belongs to the SP (Super Performance) line of lenses made from Tamron, that generally have been delivering very good performance and (especially) great value for money. This lens has been replaced recently by the VC USD version which adds Vibration Compensation optical stabilization system and a silent and fast Ultra-Sonic Drive motor with the purpose of being compatible with the newest entry-level Nikon DSLRs.
Here’s how it looks with the D700:

Announced in 2004, this particular iteration (model 272E) was optimized for digital sensors, hence the Di (Digitally Integrated) designation, and received a few cosmetical changes. Internally, this lens has 12 elements in 9 groups, none of them being of any special kind, and has 9 straight aperture blades. It doesn’t have an AF motor, so it will not focus automatically on the newest entry-level DSLRs. Speaking about focus, selecting between auto and manual is done through a push-pull clutch mechanism, which isn’t exactly friendly on the field, but mainly when it doesn’t auto-focus on the exact point at first shot and one needs to override it slightly. But when doing macro photography, most of the time it’s better to use manual focus anyway, and although the focus ring isn’t damped by any means, it is easy to turn the focus ring around since the mass of the moving elements is low. The lens is very light and compact, and with a filter thread of 55mm and weighing only about 400g, it makes a very portable lens to carry around, either on the field doing macro or on the streets shooting candids unconspicuously.
The lens is mostly plastic on the outside and has a metal mount. There’s also a rotating switch on the side that limits the minimum or maximum auto-focusing distance, depending on the current focusing point – it can either limit AF between 0.44m and infinity, or between 0.29m and 0.42m, which is nice to have to speed up the AF time. The front element doesn’t rotate while focusing, but the lens extends a lot between infinity and 0.29m, which is a bad disadvantage when shooting small insects from very close distances. In this matter the Micro-Nikkor AF-S 105mm f/2.8 G ED VR, which I also reviewed, is priceless. Like most lenses made for Nikkor until 2004, the Tamron has an aperture ring and allows to lock it at f/32 for AF, otherwise the camera would show an fEE error on the display.
Today, the Tamron can only be found on the used market, and at a price of about 250€ it’s a tremendous value for money for seriously starting getting into macro photography.

Technical Specifications

Focal length 90mm
Maximum aperture f/2.8 (far distance) – f/5.6 (nearest)
Minimum aperture f/32 (far distance) – f/64 (nearest)
Field of view 27 degrees (on FX)
Weight 405g
Dimensions 97 x 72mm (148 x 72mm, extended)
Optical construction 12 elements in 9 groups
Aperture blades 9, straight
Filter diameter 55mm
Minimum focus distance 432mm (270mm from the front element, focus limiter on), 290mm (95mm from the front element, focus limiter off)
Hood 2C9FH, round
Mount Nikon F

Mechanical Characteristics

Zoom ring n/a
Focus ring Plastic and metal with rubber finish, no infinity stop
Focus throw 260 degrees (focus limiter off)
Focus motor No
Optical stabilizer No
Front element rotation while zooming n/a
Front element rotation while focusing No
Internal focusing No
Lens extension while focusing Yes, up to 51mm
Lens extension while zooming n/a
Maximum magnification 1:1

Handling

With the D700, the Tamron is very lightweight and it’s easy to hold while doing street photography or portrait work. The lens is not a beauty by any means, and feels kind of cheap in use mainly due to the almost all-plastic build and the odd focus clutch mechanism. The front element is deeply recessed from the front of the lens, about 20mm, which makes it hard to reach for cleaning, and also because of this I never used the lens hood.
In macro photography and manually focusing, the lens provides a focus ring with a long throw for careful focusing, which is always nice to have, but the lens extension is so long that it can be very cumbersome when shooting insects from very close distances. This aspect of the lens is what makes it feel so cheap in use and separates it completely from the likes of the Micro-Nikkor AF-S 105mm f/2.8 G ED VR. On the other hand, there are differences concering autofocus as well: although the Tamron can’t be said to be slow focusing, it hunts a lot in low light and even under good light if the contrast is a little low. Switching the AF limit on can speed up the back-and-forth hunt but not by as much as one could expect. Another issue with the Tamron is the permanent out of focus when trying to focusing on targets at similar distances, but only at medium to high distance targets. This problem arises when I use the lens to shoot portraits or street photography at maximum aperture, whenever I do a sequence of shots on the same target, and the result is: the first shot generally is in focus, but all the next shots will be out of focus, and the only way to work around this is to stop down to f/4 at least. Mind you that the problem exists only at maximum aperture, so I’m not sure if it’s only with my copy or a known issue with this lens. Because of these observations, and not surprisingly, the Micro-Nikkor trumps the Tamron in the AF department in every way possible. It’s simply in another class of its own, as the price suggests.
In summary, handling this lens is not really very pleasant, and unfortunately it may be not the ideal tool for some areas of macro photography either.

Resolution

For the resolution test I shot the 5 Euro bill as usual. Focus was achieved using Live View to avoid auto-focus imprecisions and to compensate for possible field curvature issues.
The first column shows a crop of the image center, the DX corner crop is on the second column and the third column shows a crop of the FX extreme corner. Each row represents an aperture setting, from maximum to f/22 in full stops. I opted to show crops only until f/22, since closing the aperture even more results in more and more diffraction. Also, the target was at a such distance from the camera that the maximum effective aperture was f/3.0 instead of f/2.8 – the camera always reports the effective aperture. Here are the results:

It shows the incredible amount of detail that the lens is capable to deliver in short distance department, right from the maximum aperture from corner to corner. It appears to be even a hair sharper than the 105mm VR in the FX corner, which loses a bit of “bite” there at maximum aperture.
The Tamron is a winner here, and for the price it’s fantastic! But what about long distance targets? Let’s see below:

There’s a loss of sharpness at f/2.8 in the FX corner, just like happened with the 105mm VR, and there’s also some vignetting affecting the exposure. At f/4 the problem is solved.
This indicates that the Tamron could be a superb lens for every kind of shooting, and I can only fault it when it misses focus wide open when using AF.

Distortion

I tested distortion with the usual brick wall shot:

Distortion is extremely low but has a wavy characteristic that it’s a little hard to describe and depict here in this image, but it’s virtually never a problem in the field and barely visible even in this kind of targets.

Vignetting

In this test, I shot a white wall at home using tungsten white balance and set exposure manually:

There’s a lot of vignetting at the widest aperture that affects the entire picture, but decreases substantially by stopping down. At f/5.6 it’s completely gone.

Chromatic aberrations

For this test I shot a car from above on a bright sunny day early in the afternoon:

This lens is Di (Digitally Integrated) which means it should take care of chromatic aberrations better than its antecessors, but although this test doesn’t show any vestiges, I know from experience that it shows a some wide open especially in metal surfaces under bright light. But at f/4 they’re completely gone.

Coma

Coma was tested using a LED source, at home in a dark room. I put the light source at the center (first column), corner and extreme corner of the frame (second and third columns, respectively), at maximum aperture and stopped down.

Coma is visible at full aperture already in the DX corner in these type of test shots, but it’s rarely seen in practice. The points of light are always pretty much circular everywhere and only the small less bright areas around the center are kind of oval, but hardly distracting. By f/4 the “problem” is not visible anymore. All in all, it’s a more than good performance here.

Flare

I shot some foliage in my garden against the sun, to see if I could see any flare vestiges. I shot directly against the sun, then placed the sun at one corner and finally made some shots with the sun just outside the frame.

Shot directly against the sun.
Shot with the sun placed at one corner of the frame.
Shot with the sun just outside the frame.

The lack of special elements in the design of the lens also shows here in this test. Shooting against the sun doesn’t result in a real loss of contrast, but the problem is the high amount of internal reflections when the sun is placed in the corner of the frame or just outside. Of course, macro photography and sun in the frame usually don’t go together, but it’s a real problem when shooting landscapes of any things other than macro with the sun there or nearby. It’s also susceptive to flare at night with street lamps, so watch out.

Bokeh

The lens has 9 straight aperture blades, and therefore it’s expected to see circular out of focus highlights at maximum aperture and polygonal shapes when stopping down. I took a defocused picture at the widest aperture of the city lights and got crops of the center, corner and extreme corners. The test was repeated for the subsequent two stops. Due to the focus distance I selected for this test, the maximum effective aperture was reduced to f/3.5.

As expected, bokeh at the widest aperture is generally pleasant but not as creamy as with the 105mm VR because of the visible edges. This is especially noticeable when shooting against foliage and the sun, where the multiple out of focus highlights and their edges can be a little distracting. At f/4 the difference is the begin of the polygonalization of the highlights, which are clearly seen at f/5.6.
Of course, overall it’s still pretty good.

Macro/Close-up

With the focus limiter switched on, the Nikkor was capable to focus as close as 43.2 centimeters from the sensor plane, or 27 centimeters from the front element. When the focus limiter is switched off, the focus distance drops down to 29 centimeters from the sensor plane or 9.5 centimeters from the front element, to a maximum magnification ratio of a real 1:1.
I shot an 1 Euro coin and this is what to expect at the minimum focus distance:

Focus limiter on

Focus limiter off

Summary

Build quality 6 Almost entirely plastic but the build is tight
Handling 4 Lens extension while close focusing and clutch mechanism may bother some, repetitive misfocus wide open is bad
Resolution 10 Superb sharpness across the frame at all apertures, it hardly gets better than this
Distortion 10 Absent in all practical shooting
Vignetting 9 Very strong at full aperture, but improves a lot by stopping down
Chromatic aberrations 8 Easily seen in metal surfaces in bright light at maximum aperture
Coma 10 Pretty much unnoticeable in practice
Flare 4 Contrast almost doesn’t suffer but may produce harsh internal reflections
Bokeh 6 Very soft but highlight edges can be distracting at times, gets polygonal too early by stopping down
Overall 78% A good lens for getting started with macro photography, and delivers beautiful results in many other areas

Samples

Here are some samples of pictures I made with this lens. Settings: native JPEG, picture control set to Landscape mode, no post-processing applied except reducing to 600 pixel width.

90mm, f/11, 1/125s, ISO 400, external flash
90mm, f/8, 1/200s, ISO 200
90mm, f/2.8, 1/200s, ISO 200
90mm, f/20, 1/80s, ISO 500, external flash
90mm, f/4.5, 1/10s, ISO 200, tripod
90mm, f/3.0, 1/500s, ISO 200

Voigtländer Color-Skopar 28mm f/2.8 SL II Aspherical : Review

Introduction

I’m back again with my newest lens review, this time of the Voigtländer Color-Skopar 28mm f/2.8 SL II Aspherical lens for the Nikon mount, tested as usual on a Nikon D700 full-frame DSLR. Just like its twin sister lens, the Voigtländer Color-Skopar 20mm f/3.5 SL II Aspherical, this is a pancake lens with a slim, elegant design, and makes a very portable and lightweight combo with the D700 as shown below:

Just like its twin, the retail price of €449 doesn’t seem cheap at first, but besides being an all-metal lens it has a relatively fast maximum aperture, especially for a pancake design. Pancake lenses are particulary rare in Nikon mount, and this lens may be like a God’s send for those who appreciate shooting with this type of lenses. This lens looks so similar to the 20mm f/3.5 that I will base my description of the 28mm on that review I wrote some time ago.
The lens includes an aspherical element to reduce aberrations and distortions. Being a manual focus lens, it can be a bit limiting for you depending on your shooting style, but that’s also true for every manual focus lens such as Nikkor AI or Zeiss ZF lenses. The fact that the lens has a wide focal length reduces this limitation a bit, being very easy to focus anywhere you want.
I’ve been shooting with this lens for some months now and I have better feelings with it than those I had with the 20mm which performed badly on the full-frame sensor, and now I trust this lens for every occasion where I need to travel light. The 20mm was a sweet lens on DX, it had the perfect focal length to cover a great range of scenarios, and I used it mainly to shoot street scenes, landscapes, monuments, inside museums and churches, cafĂ©s, pretty much everything I wanted. But when I migrated to FX I wasn’t that enthusiastic with the focal length, and worse, it performed badly in the corners. So I looked forward to Cosina to release a new pancake lens with a equivalent focal length on FX, and voilĂ , it seemed that Cosina was listening to me and didn’t took much time for this 28mm to arrive. I was also thrilled that they increased the maximum aperture to f/2.8.
Last time I used this lens was on my summer vacations in southern Spain and I loved it, it performed so much better than the 20mm, that I was shooting at f/4 all the time in churches and museums with no regrets. The maximum aperture was also excellent when I needed to do a close up or a quick portrait, since the quality at the center of the frame is very high. It looked like I was shooting again with the 20mm on my old D300, but seemed even better! This lens was also good to shoot unnoticed among the multitude of tourists that visited the region at that time of the year, but also got a few smiles from other photographers that were curious about its diminute size. But I will describe its performance in detail below.

Technical Specifications

Focal length 28 mm
Biggest aperture f/2.8
Smallest aperture f/22
Field of vision 74.8 degrees (on FX)
Weight 180 g
Dimensions 25 x 62 mm
Optical construction 7 elements in 6 groups, 1 aspherical element
Aperture blades 9, straight
Filter diameter 52 mm
Minimal focus distance 22 cm
Hood LH-28N (optional)
Mount AI-S, CPU integrated

Mechanical Characteristics

Zoom ring n/a
Focus ring All-metal, with infinity stop
Focus throw 160 degrees
Focus motor n/a
Optical stabilizer n/a
Front element rotation while zooming n/a
Front element rotation while focusing No
Lens extension while zooming n/a
Lens extension while focusing Yes, 6 mm
Internal focusing No

Handling

Handling this lens is every bit the same as handling the 20mm, so I will basically copy-paste the same description.
The Voigtländer is a very compact lens as you can see above in the pictures, and being all-metal it’s very well built and surprisingly heavy for such size. Being a manual focus lens, probably the most important aspect is how the focus ring feels on your fingers, and it does indeed feel great. The focus ring is perfectly damped and focusing is very smooth. I have been shooting with some manual focus lenses (AI-S and Samyang) but focusing with this lens feels even better than those. It feels smooth and has a long throw of about 160 degrees for precise focusing. This is mostly useful in near distance, of course, because from about 10 meters to infinity there’s almost no need to move the focus ring again. The lens stops focusing on infinity which is great news for astrophotographers.
The less positive things about this lens is that it doesn’t have a lock on the aperture ring, therefore watch out and keep the aperture ring at f/22, otherwise you’ll get a fEE error on your LCD display. Because the lens is so tiny and there’s almost no space between the focus and aperture rings, attaching and dettaching the lens from the camera can be a bit difficult, but with a firm grip on both focus and aperture ring, along with the fixed 3mm spacer in between, it can be done but be warned that the lens gets almost glued to the camera.
Anyway, my only thumbs down goes (once again) to the front cap which gets off so easily with just a small touch. I instantly replaced that cap with a (heresy!) Canon one.

Resolution

For the resolution test I shot a near distance object and a far away building to find out if there were any visible differences in image quality between those distances. As usual, I focused with Live View and re-focused when moving the target to the corners.
The first column shows a crop of the image center, the corner crop is on the second column and the third column shows a crop of the extreme corner. Each row represents an aperture setting, from maximum to minimum in full stops. Here are the results:

The resolution at the center is already excellent straight from the maximum aperture, showing high contrast and clarity. This is always true until f/16, from which diffraction starts affecting the image and there’s a loss of contrast. The DX corner resolution is not so good wide open but is more than acceptable at f/4 and peaks at f/5.6, and keeps on high values until f/16. The extreme corners are a bit weaker at f/2.8 and appear affected greatly by vignetting, but after quick correction in post-processing it is visible that the problem is not that much the lack of sharpness. If DX corner sharpness improves greatly at f/4, the extreme corners will take one more stop to reach similar levels. But still, for very good sharpness across the frame it’s better to stop down to f/8, or f/11 if critical sharpness is needed on the extreme corners of FX.
This is great performance on very close targets, but what about “real world” where most of the time the target is at at least several meters away?

Although this target seems a bit flat in contrast, careful examination shows that there are no meaningful differences in resolution, being already excellent at f/2.8 in the center and very good in the DX corner, but not so good in the FX corner and still affected by heavy vignetting. The aperture of f/8 delivers very good resolution across the frame, just like we saw in the previous test.
In conclusion, this is a much more versatile lens than the 20mm with a broader range of useful apertures, which was to be expected from the start since 20mm is more difficult to produce than a 28mm lens, especially when we’re talking about pancake lenses, and also because the maximum aperture is higher.

Distortion

For the distortion test I shot some tiles:

The lens distortion is well controlled. There’s a mild amount of barrel distortion but generally it’s not noticeable on most shots, and it’s easy to correct in post on architecture photos if needed.

Vignetting

In this test I shot a white wall at home using tungsten white balance.

Just like it was detected previously on the resolution test, vignetting is very heavy wide open and improves significantly by f/4. From f/8 and down it generally doesn’t show up in images. Notice that this is mostly visible on shots of white walls like this. As a matter of fact, f/5.6 is already pretty much free from vignetting.

Chromatic aberrations

It was a clear bright sunny day with the sunlight reflecting on my car, and I took pictures of a area of high contrast:

The use of an aspherical element is an important feature in this lens for taking care of distortions and aberrations, and once again Cosina made an excellent job to keep aberration levels at negligible levels. From all the shots I made with this lens there wasn’t a single day I noticed any fringing issues. The lens deserves the maximum score here.

Coma

Coma is an important requirement in astrophotography and usually affects the corners of most lenses, especially wide-angle lenses and particularly old designs. I tested coma using a LED source of light in a dark room.
I put the light source at the center (first column), corner and extreme corner of the frame (second and third columns, respectively), at f/2.8 and f/4 (one stop down).

At f/2.8 the lens produces high amounts of coma even in the DX corner and much more so at the extreme corners, and doesn’t really get much better by stopping down. This is very unnattractive for astrophotographers, and if you are thinking of going out shoot the stars wide open, you better think twice or you might not like the results. This lens is awful in this regard, just like the 20mm was.

Flare

I shot several pictures on my backyard trying to get flare vestiges, and the result is as follows. I started to shoot directly against the sun, then placed the sun at one corner and then shot with the sun just outside the frame.

Shot directly against the sun
Shot with the sun placed at one corner of the frame
Shot with the sun just outside the frame

The Voigtländer has very good quality coatings inside and the results put it along with the best lenses I’ve used, with great flare resistance and keeping the overall contrast on high levels. There’s just a bit of veiling flare around the sun but no ghosting was detected on other parts of the frame. You just need to be a little cautious when shooting with the sun just outside the frame, and for this it might be a good idea to use the LH-28N lens hood available separately. Overall this is a very good result.

Bokeh

This is a wide angle lens and therefore the quality of the out of focus area of an image is not a primary aspect to consider, but still, since the lens has a relatively fast maximum aperture and 9 diafragm blades, one might expect acceptable renderings of out of focus highlighs. So lets see how the lens fares in this matter.
For this test I took a defocused picture at f/2.8 of the city lights and got crops of the center, corner and extreme corners. The test was repeated for f/4 and f/5.6.

The out of focus highlights are pretty circular at f/2.8 thanks to the 9 aperture blades, as expected, although the corners reveal the cats-eye distortion due to vignetting. Although circular, the highlights show pronounced edges and nervous interiors, but nevertheless it’s not distracting at this aperture when looking at the entire picture on my monitor. Closing down to f/4 reveals the outcome of the straight aperture blades and stays like this when closing down further. Generally, with this lens it’s better to shoot close-up subjects with the maximum aperture, where the center sharpness is already very good, to get the best out of focus renderings.

Macro/Close-up

The Voigtländer was capable to focus as close as 22 centimeters from the sensor plane, or about 15 centimeters from the front element. I shot an 1 Euro coin and this is what to expect at the minimum focus distance:

Summary

Build quality 9 A beautifully well crafted lens, but the front cap is rubbish
Handling 10 Buttery smooth focus ring and very solid, compact lens, with CPU contacts for the automated exposure modes
Resolution 8 Excellent center sharpness, very good corners and fairly good extreme corners at moderate apertures
Distortion 8 Well controlled barrel distortion for a wide-angle lens and easily correctable if needed
Vignetting 7 Very strong wide open but improves greatly stopped down
Chromatic aberrations 10 A winner just like its 20mm sister lens
Coma 6 Very strong in the corners wide open, gets just a little better by stopping down
Flare 9 Great performance, but be most careful when the sun is just outside the frame
Bokeh 5 Circular only at f/2.8 but very nervous and pronounced edges, and gets polygonal at smaller apertures
Overall 79% A good pancake lens with very much expanded range of useful apertures for FX

Samples

Here are a few pictures I took during my past holidays and in my backyard. Settings: native JPEG, picture control set to Landscape mode, no post-processing applied except reducing to 600 pixel width.

f/4, 1/25s, ISO 800
f/8, 1/400s, ISO 200
f/5.6, 1/160s, ISO 200
f/8, 1/80s, ISO 400
f/4, 1/640s, ISO 200
f/8, 1/320s, ISO 200

Micro-Nikkor AF-S 105mm f/2.8 G IF ED VR N : Review

Introduction

Today I present you with my review of the Micro-Nikkor AF-S 105mm f/2.8 G IF ED VR N macro lens, tested as always with the Nikon D700 full-frame DSLR. More than a decade has passed by since the previows D version was announced, and this G version includes lots of goodies that add more value to it, resulting in a much more versatile design for general use, not only suitable for macro but also very capable for portraits and landscapes.
This is how it looks with the D700:

Having been anounced in 2006, this lens introduces many new features and design changes compared with the previous version, such as: AF-S motor with manual override, VR II (Vibration Reduction, version II) optical stabilizer, ED (Extra-low Dispersion) glass and even one element with Nano Crystal Coat to reduce flare and improve micro contrast. The internal construction suffered many changes and now has 14 elements in 12 groups instead of 10 elements in 9 groups of the D version lens.
The lens is built with metal and high quality plastic parts, all very tightly together, and the result is a large lens weighing a hefty 790 grams. The lens has three switches, one for selecting between autofocus (with manual focus override) and manual focus only, other to activate VR, and another switch to limit minimum focus distance to half a meter. This is a G lens and therefore has lost the aperture ring, so it doesn’t work any more with the older manual SLRs.
At a price of 899€ today, this lens is not exactly cheap, but as you will see not only you get a true 1:1 macro lens but also a terrific long distance shooter with professional build quality and features. This is a true gold-ring lens and deserves that distinction.

Technical Specifications

Focal length 105mm
Maximum aperture f/2.8 (far distance) – f/4.8 (nearest)
Minimum aperture f/32 (far distance) – f/57 (nearest)
Field of view 23 degrees (on FX)
Weight 790g
Dimensions 116 x 83mm
Optical construction 14 elements in 12 groups (1 ED element, 1 Nano Crystal Coat)
Aperture blades 9, rounded
Filter diameter 62mm
Minimum focus distance 46.1cm (29.5cm from the front element, focus limiter on), 31.4cm (14.8cm from the front element, focus limiter off)
Hood HB-38, petal-shaped
Mount Nikon F

Mechanical Characteristics

Zoom ring n/a
Focus ring Plastic with rubber finish, no infinity stop
Focus throw 270 degrees (focus limiter off)
Focus motor Yes, Silent Wave Motor
Optical stabilizer Yes, Vibration Reduction II
Front element rotation while zooming n/a
Front element rotation while focusing No
Internal focusing Yes
Lens extension while focusing No
Lens extension while zooming n/a
Maximum magnification 1:1

Handling

With the D700, the Nikkor is fairly well balanced, but with a smaller camera it’s recommended to buy a battery grip since it can be very nose heavy. The lens looks and feel are great, being very solidly built like a professional lens. I have been walking around the streets with the D700 and this lens and few people look at me as the lens is not very lengthy and not intimidating. I could take candid pictures from relatively far away with ease without being suspicious. The thing changes when I use the hood; the total length increases a lot and in the streets I felt that I looked like a stalker, as this thing become huge and attracted a lot of attention.
The focus ring has a generous throw for careful framing, being very precise for far away shooting as well and not only for macro. Unfortunately, the focus ring isn’t damped although it’s fairly smooth, and this is the only practical “defect” I find compared with other professional lenses. The focus limiter sets the minimum focus distance to 0.5 meters which is very useful for shooting in the streets or events where quick focusing is a necessity. When turning the limiter on, the AF is really quick, especially for a macro lens! It’s much faster focusing than my Nikkor AF-S 50mm f/1.8 G, for instance, especially in low light situations. Turning the limiter off increases the focusing time by a lot and also increases the potential for hunting even in good light. So, basically I always shoot with the limiter on in most shooting I do, and in macro I don’t care for AF anyway and I always focus manually. And I almost forgot, the AF is really silent and in line with the other pro lenses.
The inclusion of VR is a blessing in the streets and on the occasional close-up when you don’t have a tripod nearby, as it can save the shot, particularly on that close-up shot when you have to close the aperture a lot to get all things in focus. It is always a challenge to get everything in focus with a long focal length as is 105mm, though, and that’s why VR can be so handy.
One of the greatest things I love about this lens is the fact that all focusing is internal, even towards the magnification of 1:1, since nothing moves outside. That’s another plus for macro shooting because I don’t have to worry myself about the front element touching the subject when I just want to avoid it. Also, the front element doesn’t rotate while focusing which is always nice when using polarizers.
All in all, handling this lens is a breeze in all possible situations, from macro to landscape shooting.

Resolution

For the resolution test I shot the 5 Euro bill as usual. Focus was achieved using Live View to avoid auto-focus imprecisions and to compensate for possible field curvature issues.
The first column shows a crop of the image center, the corner crop is on the second column and the third column shows a crop of the extreme corner. Each row represents an aperture setting, from maximum to f/22 in full stops. I opted to show crops only until f/22, because closing the aperture even more results in more and more diffraction. Also, the target was at a such distance from the camera that the maximum effective aperture was f/3.0 instead of f/2.8 – the camera always reports the effective aperture. Here are the results:

From this test I’ve found that the Micro-Nikkor is a perfect performer right from the maximum aperture, with only almost negligible softness in the extreme corners that disappears when stopping down. The overall contrast decreases a bit by f/16 and diffraction settles in at f/22 and gets worse afterwards.
The Nikkor is a stellar performer and I couldn’t ask more of this lens. It’s just stunning at every “normal” aperture and you have to see it to believe it, even in full-frame. This kind of performance is somewhat common with most macro lenses, but it’s likely that some people were expecting less when Nikon decided to change the internal construction and increased the number of elements. This has to be one of the sharpest lenses ever.

Distortion

I tested distortion with the usual brick wall shot:

Distortion is very low, with a only a tiny amount of barrel distortion that is counteracted by an equal bit of mustache at the corners. The result is straight vertical lines, and horizontal lines having a very residual wavy characteristic. This is negligible in the field and barely visible even in these test targets.

Vignetting

In this test, I shot a white wall at home using tungsten white balance and set exposure manually:

There’s a lot of vignetting at the widest aperture that decreases substantially by stopping down, but it’s only visible when shooting far distance subjects. This can result well in portraits and street candids, though. For small distance shooting there’s nothing to worry about because the lighting across the frame is always fairly uniform.

Chromatic aberrations

For this test I shot a car from above on a bright sunny day early in the afternoon:

This lens employs ED glass to reduce chromatic aberrations to a minimum and this test clearly shows that it works, and it works very well indeed. I’ve never found any fringing issues even when shooting close-ups of bright metal objects under intense light. In this regard, this lens is perfect.

Coma

Coma was tested using a LED source, at home in a dark room.
I put the light source at the center (first column), corner and extreme corner of the frame (second and third columns, respectively), at maximum aperture and stopped down.

Coma is hardly visible only in the extreme corners at the widest aperture but the effect disappears stopping down. It’s an excellent performer in astrophotography, and I have always confirmed it in the field. It’s not really perfect at the extreme corners wide open, but it’s almost there.

Flare

I shot a building in construction with the sun sneaking from a window, to see if I could see any flare vestiges. I started to shoot directly against the sun, then placed the sun at the corner and finally made some shots with the sun just outside the frame.

Shot directly against the sun.
Shot with the sun placed at one corner of the frame.
Shot with the sun just outside the frame.

This was truly unexpected, because everyone was talking about how great Nano coating is reducing flare, but I quickly saw myself that Nano is not the miraculous solution only by itself. Nano coating is great improving flare resistance, but the amount of flare that a lens can produce is highly dependent on the lens design. In this very lens, flare and ghosting can be really horrendous. This is the worst case I’ve dealed with so far, much worse than the Nikkor AF 28-105mm f/3.5-4.5 D that I have tested before.
Shooting against the sun gives a tremendously high amount of flare, with the brightness obscuring most of the picture. Putting the sun in one corner reveals an ugly reflection that goes diagonally across the image, ruining any shot. When the sun is just outside the frame, the issue can be easily controlled using just the lens hood.
Obviously, this lens has to be handled with great care when shooting with the sun in the frame, even when taking pictures of sunsets! I can’t imagine any worse performance than this.

Bokeh

The lens has 9 rounded aperture blades, thus it’s expected to get pretty circular out of focus highlights. I took a defocused picture at the widest aperture of the city lights and got crops of the center, corner and extreme corners. The test was repeated for the subsequent two stops. Due to the focus distance I selected for this test, the maximum effective aperture was reduced to f/3.5.

I couldn’t want much more from this lens in terms of bokeh at full aperture. The out of focus highlights are so creamy smooth, either inside and on the edges, that always results in very attractive backgrounds. There is the cats eye effect in the corners due to vignetting, but few lenses don’t have it. At f/4, a slight polygonization can be noticed and gets a little worse at f/5.6, but even then bokeh is a delight especially when considering the aperture value.
Overall, although not perfect bokeh as, for instance, the one from a Nikkor AF-S 85mm f/1.4 G lens, you can’t go wrong with this Micro-Nikkor in terms of bokeh.

Macro/Close-up

With the focus limiter activated, the Nikkor was capable to focus as close as 46.1 centimeters from the sensor plane, or 29.5 centimeters from the front element. When the focus limiter is switched off, the focus distance drops down to 31.4 centimeters from the sensor plane or 14.8 centimeters from the front element, to a maximum magnification ratio of a real 1:1.
I shot an 1 Euro coin and this is what to expect at the minimum focus distance:

Focus limiter on

Focus limiter off

Image stabilization

The Micro-Nikkor includes the second version of VR (Vibration Reduction) which makes this lens very useful in other types of photography. Nikon states that VR II is capable of giving an advantage of 4 stops. That means that at 105mm, it is possible to achieve sharp pictures at speeds as low as 1/6 seconds!
To test it, I shot the back of a street lamp from my window. The first column shows crops of the subject shot with VC off, and the second column shows them with VR on. Here are the results:

I took the pictures at ISO 100 and closed the aperture to its minimum possible, but unfortunately the lowest speed I got was 1/10 seconds, somewhere between 3 and 4 stops down from the typical lowest speed of 1/100 seconds for hand-held shooting without stabilization.
As can be seen here, VR worked flawlessly down to 1/10 seconds, and in this case the obtained softness was due to high diffraction; I shot this last picture at f/32.
Even knowing that I did not achieve 1/6 seconds of speed, I strongly believe that it is possible to get sharp pictures at that speed from people with steadier hands than mine and better hand-holding technique.

Summary

Build quality 10 A solid brick, very professional
Handling 8 Good handling in every type of shooting, fast AF and decent VR
Resolution 10 Stellar sharpness across the frame at all apertures, it’s very hard to think of a sharper lens
Distortion 10 Perfect here in all practical shooting
Vignetting 9 Strong at full aperture, but stopping down gets very well controlled
Chromatic aberrations 10 No fringing issues even when shooting foliage against the sun
Coma 10 Very hardly visible wide open in the extreme corners, perfect in the field
Flare 1 The lowest score possible, I can’t imagine a worse case
Bokeh 8 Creamy soft at all apertures, but gets polygonal early in the corners
Overall 87% Amazing optics in a solidly built, versatile package, for many types of shooting

Samples

Here are some samples of pictures I made with this lens. Settings: native JPEG, picture control set to Landscape mode, no post-processing applied except reducing to 600 pixel width.

105mm, f/2.8, 1/400s, ISO 200
105mm, f/5.6, 1/125s, ISO 400
105mm, f/4.0, 1/1250s, ISO 1600
105mm, f/11, 1/200s, ISO 1600
105mm, f/4.0, 1/1250s, ISO 800
105mm, f/16, 1/80s, ISO 800

Nikkor AF 28-105mm f/3.5-4.5 D : Review

Introduction

Here is my review of the Nikkor AF 28-105mm f/3.5-4.5 D zoom lens for the Nikon mount, tested with the Nikon D700 full-frame DSLR. This is a practical zoom lens for walking around that has a useful wide to mid telephoto coverage, which is great for street shooting, from wide scenes to portraits.
Take a look at how the lens combines with the D700:

This lens was introduced in 1999 and was sold as a kit lens or as upgrade to the kit lens supplied with the Nikon F100. The lens includes 16 elements in 12 groups, one of those elements being of aspherical type to reduce optical distortions. It’s an all-plastic made lens, at least on the outside (including the filter thread), except for the mount which is metal, but the plastic is high quality although is not rugged as the newer G lenses, being very smooth (too much) instead. The lens features an aperture ring with a lock at the f/22 position, making it compatible with the older manual SLRs.
It can be found today in the used market as a bargain; the prices range from about 90€ to 175€. I got mine as a temporary solution when I got into FX while I was waiting for other cheap lightweight options, and since then I’m having trouble finding a better affordable alternative. It has been worth every penny and much more! I’m looking forward to see how the upcoming Nikkor AF-S 24-85mm f/3.5-4.5 G does and how much it costs, because maybe this could be a good replacement.

Technical Specifications

Focal length 28 – 105mm
Maximum aperture f/3.5 – f/4.5
Minimum aperture f/22 – f/29
Field of view 74 – 23 degrees (on FX)
Weight 455g
Dimensions 84 x 72mm (120 x 72mm extended)
Optical construction 16 elements in 12 groups (1 aspherical element)
Aperture blades 9
Filter diameter 62mm
Minimal focus distance 124.5cm (4.5cm from the front element)
Hood HB-18, rounded and very enlarged up front
Mount Nikon F

Mechanical Characteristics

Zoom ring Plastic with rubber finish
Focus ring Plastic with rubber finish, with infinity stop
Focus throw 30 degrees (with focus limiter), 74 degress (without)
Focus motor No
Optical stabilizer No
Front element rotation while zooming Yes, 185 degrees
Front element rotation while focusing No
Internal focusing Yes
Lens extension while focusing No
Lens extension while zooming Yes, up to 37mm
Maximum magnification 1:2, at 105mm

Handling

The Nikkor is a small and lightweight lens for FX standards, particularly when compared with modern G lenses with internal focus motor, like the Nikkor AF-S 24-120mm f/3.5-5.6 G zoom lens. The lens looks nice, except when the ugly hood is attached – it’s an absurdly huge hood, rounded and very enlarged up front, like a funnel. I never use the hood, but if I needed one I’d look for other third-party alternatives.
Using the lens may be disappointing at times, especially when trying to frame the subject with precision. The Nikkor is all-plastic made at least on the outside, including the filter thread (except the mount which is metal), and both the zoom and focus rings have a rubber finish for enhanced grip. The problem is that the zoom ring isn’t damped, in fact it’s the worst zoom lens I ever used (I thought the Nikkor AF 28-80mm f/3.3-5.6 G was the worst). Zooming is all but smooth and feels like rubbing plastic on plastic, and the ring gets stuck all the time, making precise framing very hard. Also, zooming is very non-linear; the change in magnification seen in the viewfinder doesn’t act linearly as the zoom ring is turned around. To make things even worse, the front element rotates a lot while zooming, being an absolute nightmare when shooting with a polarizer.
On the other hand, the focus ring is much smoother and never gets stuck, but it’s pretty much useless for manual focusing due to the very short throw. There’s a switch on the lens that limits the minimal focus distance to 0.5 meters, which makes focusing quick (but not lightning quick) on the D700 when the limiter is activated. To turn off the limiter, one has to zoom in at least to 50mm, but once the switch is moved there’s no way back to wider focal lengths, unless the user focuses some object between 0.5 meters and infinity. It’s a bit cumbersome at first but one gets used to it.
The 28-105mm has a very good close focus capability, reaching a maximum magnification ratio of 1:2 at 105mm. Mind you, this feature isn’t perfect though; the center resolution is very good, but the corners never reach the same level because of the huge field curvature at that setting.
So, regarding handling, this lens feels very cheap but it’s not that bad for a walkaround lens. I prefer to use a lightweight lens like this on the streets instead of a 24-120mm f/4 VR, for example. Besides, you may be positively surprised with the image quality if you manage to find a good copy.

Resolution

For the resolution test I shot the 5 Euro bill as usual. Focus was achieved using Live View to avoid auto-focus imprecisions and to compensate for possible field curvature issues.
The first column shows a crop of the image center, the corner crop is on the second column and the third column shows a crop of the extreme corner. Each row represents an aperture setting, from maximum to f/22 in full stops. Here are the results:

28mm

At 28mm the center resolution is already excellent right from f/3.5 and only starts to get worse at f/16 due to diffraction. The corner and border resolution never reach the same level, but is more than acceptable and stays constant until f/22 where resolution drops significantly. The edge-to-edge resolution is good but could be better especially when stopped down, as happens with most lenses, but instead remains constant trough the aperture range.

70mm

By 70mm the resolution in the center remains on an excellent level and corners follow very closely. Only the extreme corner performance is noticeably worse, being a little soft until f/8, but at f/11 there’s a sudden jump in quality. This isn’t very noticeable outside the studio, but if you need excellent resolution in the entire frame then f/11 is the aperture to choose here.

105mm

At 105mm the lens continues to deliver great resolution figures straight from the maximum aperture of f/4.5, and only the extreme corners are visibly softer. The resolution characteristic here is identical to the one at 70mm. Some owners of this lens say that the lens is very good at all focal lengths except at 105mm. Au contraire, my copy is worse at the wider end; for my type of shooting I wish it had better resolution here than at 105mm.
Like I said before, at the macro setting at 105mm, the center resolution is great (like as seen above at 105mm), but the corners are always much worse and don’t improve much, even when closing the diafragm to the minimum of f/29. But it’s nice when your subject fills the center of the frame, anyway.

Regarding resolution, this Nikkor is a solid performer and produces stunning pictures on the D700. It could be a little better at 28mm at the edges, of course, but that’s about it.

Distortion

Here are the brick wall shots:

28mm

70mm

105mm

At the widest focal length, the lens produces a considerable amount of barrel distortion. This can be almost entirely corrected in post-processing, and I say “almost” because even then the pictures still have a residual mustache distortion. It’s not problematic though, unless you need perfectly distortion-free images. At the other focal lengths there’s nothing to complain about because distortion disappears completely.

Vignetting

In this test, I shot a white wall at home using tungsten white balance and set exposure manually:

28mm

At 28mm, vignetting is strong wide-open and down to f/4. By f/5.6 the light losses are average but improve greatly afterwards.

70mm

At 70mm, there is just a bit of vignetting at f/4.5 but vanishes stopping down, resulting in very uniform light distribution across the frame.

105mm

At 105mm, the lens vignettes wide-open down to f/5.6, but from f/8 there aren’t traces of it anymore.

The lens suffers from vignetting more at 28mm, at the f/3.5 and f/4 settings. Nothing that can’t be solved in post-processing, though. At other apertures and focal lengths this isn’t an issue.

Chromatic aberrations

For this test I shot a car from above on a bright sunny day early in the afternoon:

28mm

105mm

As happens with older lenses without special low dispersion elements, there’s a noticeable amount of purple friging in high contrast areas at the maximum aperture at all focal lengths. It’s not visible when looking at the entire image on my monitor, but viewing at 100% may reveal fringing reaching several pixels wide. Stopping down brings the problem to a negligible effect, which may still be noticeable in careful pixel-peeping. Overall it’s still a good performance from any lens.

Coma

Coma was tested using a LED source, at home in a dark room.
I put the light source at the center (first column), corner and extreme corner of the frame (second and third columns, respectively), at maximum aperture and stopped down.

28mm

105mm

The lens suffers from heavy coma, putting it on par with other old lenses, especially at the wider end. Obviously it’s not a good candidate to take out for astrophotography.

Flare

I shot a building in construction with the sun sneaking from a window, to see if I could see any flare vestiges. I started to shoot directly against the sun, then placed the sun at the corner and finally made some shots with the sun just outside the frame.

Shot directly against the sun.
Shot with the sun placed at one corner of the frame.
Shot with the sun just outside the frame.

The lens has a weak resistance to flare and ghosting that interferes on the overall image contrast. When shooting against the sun there’s a huge halo around it that occupies almost the entire image. Placing the sun at one corner reveals the multiple internal reflections, which are very visible in the entire frame towards the opposite corner. Even when the sun is already outside the frame, there’s almost a 100% probability of still having problems. Unfortunately, since the supplied lens hood is so large at the front, it only reduces the problem a bit when the sun is just outside the frame, and that’s another reason I don’t use it at all (besides the ugly look).
In conclusion, this is the worst case I’ve dealed with so far. But since normally people never shoot against the sun or at the proximity, in practice this isn’t an issue.

Bokeh

The lens has 9 aperture blades, thus it’s expected to get circular out of focus highlights. I took a defocused picture at the widest aperture of the city lights and got crops of the center, corner and extreme corners. The test was repeated for the subsequent two stops.

28mm

105mm

The bokeh from this lens is almost perfectly circular in the entire frame, in fact so far it’s the most constant characteristic I’ve seen. There’s only a little distortion in the extreme corners, but there’s no cats-eye distortion or any worse drastic effects. On the down side, the bokeh is never smooth on the inside and the edges are very pronuntiated, especially at the widest focus length.
Overall, the lens has a better than average bokeh characteristic, and produces very nice out of focus renderings in all situations without interfering negatively with the subject.

Macro/Close-up

With the focus limiter activated, the Nikkor was capable to focus as close as 44 centimeters from the sensor plane, or 32 centimeters from the front element, resulting in a maximum magnification ratio of 1:5.2 at 105mm. When the focus limiter is switched off, the focus distance drops down to 16.5 centimeters from the sensor plane or 4.5 centimeters from the front element, to a maximum magnification ratio of 1:2 at 105mm.
I shot an 1 Euro coin and this is what to expect at the minimum focus distance:

28mm

105mm

105mm, focus limiter off

Summary

Build quality 4 Almost entirely plastic-made and feels cheap
Handling 5 An useful zoom lens with decent AF speed and features, but zooming is disappointing in many aspects
Resolution 8 Great resolution overall, but could be improved a little at 28mm
Distortion 8 Noticeable barrel distortion at 28mm, but disappears afterwards
Vignetting 8 A little strong at biggest apertures, but good looking otherwise
Chromatic aberrations 8 Only visible at maximum aperture at all focal lengths while pixel-peeping
Coma 5 A lot of coma especially at 28mm, but always present at other focal lengths
Flare 3 Very weak resistance against flare, and the hood doesn’t help here
Bokeh 7 Circular but very nervous with accentuated edges at 28mm, but improves at 105mm
Overall 67% A very sharp and handy lens in FX that bears other good optical characteristics, but there’s an equal number of downsides too

A final remark

On a very subjective opinion, the final score doesn’t reflect how great and handy this lens can be on the street if one takes some basic precautions. As long as you shoot with the lens stopped down on sunny days and never shoot against the sun, the lens can produce fantastic images with good color (a bit on the conservative way), good bokeh and relatively low distortion.
Thus, for anyone starting with FX with limited funds, this lens is the one to start with. There are many other alternatives with similar focal range, but the 28-105mm is hard to beat in resolution, regardless of price. In fact, I’ve seen much worse from third-party lenses with constant f/2.8 aperture.
In few words, this is a cheap lens that produces fantastic results, as long as you take the precautions refered above and can live with the many mechanical limitations.

Samples

Here are some samples of pictures I made with this lens. Settings: native JPEG, picture control set to Landscape mode, no post-processing applied except reducing to 600 pixel width.

105mm, f/4.5, 1/160s, ISO 200
105mm, f/4.5, 1/125s, ISO 200
28mm, f/5.6, 1/1000s, ISO 200
38mm, f/8.0, 1/500s, ISO 200
28mm, f/11, 1/320s, ISO 200
90mm, f/8.0, 1/500s, ISO 200

Tamron SP 70-300mm f/4-5.6 Di VC USD : Review

Introduction

This is a review of the Tamron SP 70-300mm f/4-5.6 Di VC USD telephoto lens for the Nikon mount. The test was once again made using a D700 full-frame DSLR. This is a well-built lens, very solid without any wobbling parts, and competes directly with the Nikkor AF-S 70-300mm f/4.5-5.6 VR lens which has been very successful among amateurs and enthusiasts. Here’s how the D700 combines with the Tamron lens:

This has been a very welcome addition to the market, because the Nikkor had been alone price-wise, and third-party options were not up to the standards. Fortunately, the Tamron is a very viable alternative and it even has some characteristics that surpass its direct rival, as we will see. The Tamron belongs to the SP (Super Performance) line, the same line that has, among others, the highly praised 17-50mm f/2.8 (DX) and 28-75mm f/2.8 (FX) lenses. This 70-300mm is the first Tamron lens having the new USD (Ultrasonic Silent Drive) auto-focus motor for fast and silent focusing, and also the first including their innovative optical stabilizer mechanism, VC (Vibration Compensation). Indeed, the lens is very silent and rather quick focusing, but may hunt at times in areas with low contrast, the same happening in low light situations, otherwise the lens focuses quickly. The lens also has special glass elements, LD (Low Dispersion) and XLD (Extra Low Dispersion), which are employed to take care of chromatic aberrations. One thing that’s always good to have is IF (Internal Focusing) and this lens got it, and because of that the front element never rotates when focusing, therefore using a polarizer is no problem.
At a retail price of €389 right now, at a first sight and looking at the specifications, the lens seems to have a great price/perfomance ratio, but that’s the thing we’ll find out later in this review. On the D300 I had before, this lens was stellar for the price, having very good sharpness corner to corner at every aperture and only with a slight drop at 300mm, being a terrific combination for quick operation speed and optical performance in all focal lengths for users who don’t normally shoot in low light situations.

Technical Specifications

Focal length 70 – 300mm
Maximum aperture f/4 – f/5.6
Minimum aperture f/32 – f/45
Field of vision 34 – 8 degrees (on FX)
Weight 765 g
Dimensions 144 x 80mm (194 x 80mm extended)
Optical construction 17 elements in 12 groups (1 LD element, 1 XLD element)
Aperture blades 9
Filter diameter 62mm
Minimal focus distance 144cm (125cm from the front element)
Hood HA005, petal-shaped
Mount Nikon F

Mechanical Characteristics

Zoom ring Plastic with rubber finish
Focus ring Plastic with rubber finish, no infinity stop
Focus throw 160 degrees
Focus motor Ultrasonic Silent Drive, allows full-time manual focus override
Optical stabilizer Vibration Compensation, up to 4 stops capability
Front element rotation while zooming No
Front element rotation while focusing No
Internal focusing Yes
Lens extension while focusing No
Lens extension while zooming Yes, up to 51mm

Handling

The Tamron is a big fat lens and even with the D700 is a little front-heavy, but not overly so. Playing with the zoom ring feels like plastic against plastic, but nevertheless it’s not only smooth enough for quick operation, but also acceptable enough for the times when you need precise framing. Some people complain that the zoom ring is a little stuck on their copy, but that might be true when the lens is brand new; I don’t remember mine having a stuck zoom ring. The focus ring feel is similar, but since it’s lighter it’s easier to turn around.
The lens allows full-time manual focusing without the need to turn the lens or camera to manual focus. Common with other built-in auto-focus motor lenses, the focus ring never stops rotating and is capable to focus past infinity. The Tamron focuses as near as 144cm from the focus plane (125cm from the front element) at 300mm, resulting in a maximum magnification ratio of 1:4, which is less magnification than the previous Tamron 70-300mm was capable of (1:2).
The lens has a long petal-shaped hood and the caps are of good quality. The front cap is similar to Nikon’s, allowing you to take it off and put it on without the need to take the hood off. The lens has a metal mount, which is a must-have for such weight, but doesn’t have a tripod collar, so be sure to have the camera well attached to the tripod socket when using the combo for long exposures.

Resolution

For the resolution test I shot the 5 Euro bill in the studio. Focus whas achieved using Live View to avoid auto-focus imprecisions and to compensate for an hypothetical field curvature.
The first column shows a crop of the image center, the corner crop is on the second column and the third column shows a crop of the extreme corner. Each row represents an aperture setting, from maximum to f/22 in full stops. Here are the results:

70mm

At 70mm the center resolution is already excellent right from f/4 and only deteriorates at f/22 due to diffraction. The corner resolution is on a very good level until f/11 and drops noticeably at f/16. The borders are on a much lower level; by f/4 the sharpness is only acceptable and improves slightly at f/5.6, but reaches a good level from f/8 to f/11 before dropping again at smaller apertures. All in all, a very good performance at this focal length (not that, from now on, if you’re considering using this lens on DX, use the first and second columns only as reference, since the second column shows crops of the same area as the extreme corners on DX).
Moving on to other focus lengths now…

100mm

At 100mm the resolution at the center and corners is excellent already wide-open and only drops by f/22. The extreme corners are good wide-open at reach very good figures by f/5.6 and the resolution drops a bit at f/16. From 100mm to 135mm seems to be the lens’ sweet spot.

200mm

At 200mm the center resolution is always on an excellent level but the corners start to show some limitations. Wide-open and until f/8 the resolution figures are only on an acceptable level and the extreme corners follow closely. At f/11 there’s a sudden increase in quality in the entire frame and that continues at f/16. By f/22 the resolution drops a little but not by much as in previous focal lengths.

300mm

At 300mm, resolution drops noticeably in the entire frame but remains good to very good at the center. On the downside, the corners are never on the same level, and for good edge-to-edge sharpness one has to stop down to f/16 or even f/22. This is not noticeable in the real world, trust me, because at 300mm you tend to put the subject at the center anyway.

Overall, the Tamron shows a strong performance, producing sharp and contrasty images at all focal lengths, and its strongest selling point is the resolution and contrast at 300mm. This is much better than the Sigma 70-300mm f/4-5.6 APO Macro I had before and better than its direct rival, the Nikkor AF-S 70-300mm f/4.5-5.6 G ED VR I had played with.

The only thing that changed my opinion about the Tamron now, compared to the performance delivered with my previous D300, is the noticeable variation in exposure. It is very visible, at all focal lengths, that the lens underexposes a lot at the maximum aperture and less so stopped down, exposes well at f/8 and overexposes at f/11, before underexposing again by f/16. The weird thing is that it wasn’t noticeable at all with the D300, when only I had some minor overexposures in bright sunny days which were corrected simply dialing to -0.3 or -0.7 EV, independently of the aperture I was using. Now I can’t say that my lens doesn’t underexpose or overexposes, but instead a combination of the two that is dependent on the aperture. I can’t really say if this is because of heavy vignetting, but if so it affects the entire pictures and not only the borders, but also there’s a bit of overexposure at f/11 that is visible in the camera histogram. This will be more visibly explained below in the vignetting test.

Distortion

For the distortion test I shot a brick wall, again:

70mm

135mm

300mm

The lens distortion is practically absent at 70mm but starts producing a certain amount of pincushion at 135mm which stays constant until 300mm. On the field this is practically invisible and can be easily corrected in post-processing if needed.

Vignetting

In this test I shot a white wall at home using tungsten white balance and setting exposure manually. The exposures were judged by the camera histogram and are considered to be spot on when it’s centered.

70mm

At 70mm, vignetting is strong wide-open and less so at f/5.6, before improving considerably at f/8. At smaller apertures it disappears completely.

135mm

At 135mm, the same behaviour happens exactly as before.

300mm

At 300mm, only the widest aperture is affected by vignetting but in a very strong way. At other apertures there isn’t any noticeable light losses towards the edges.
As said above, the lens is affected by exposure differences that affect the entire image, as opposed by vignetting which only affects the borders of an image by any degree. I also could not find an explanation for the overexposure seen at f/11 from 70mm to 135mm. This is the first time I had a problem like this one and I’m not sure if the problem is related to this particular copy or any other sample. There are many people who complained about their copy producing under- or overexposed pictures, but mine gives exposures that were unpredictable at first, but can be corrected dialing exposure compensation accordingly depending on the aperture used. This phenomenon is more visible in Matrix metering mode and less so in Center-Weighted mode. I found no differences between aperture and shutter priority, or manual exposure modes. I will try to repeat the test if I have the chance of getting another copy.

Chromatic aberrations

For this test I shot a car roof from above, on a very sunny day early in the afternoon.

70mm

300mm

The Tamron employs low dispersion glass elements to reduce chromatic aberrations and it’s clearly visible that the lens performs as advertised. Aberrations are negligible at almost every aperture, except at its maximum where minor vestiges can be found on extremely high contrast situations, but only at the widest focal length. That’s a very good performance for a lens in this price point.

Coma

Coma is an important requirement in astrophotography and usually affects the corners of most lenses. Lenses that are affected by coma produce comas (hence the name) instead of bright light points in dark backgrounds. One way to test coma is using a LED source of light at home in a dark room.
I put the light source at the center (first column), corner and extreme corner of the frame (second and third columns, respectively), at maximum aperture and stopped down.

70mm

300mm

The lens isn’t much affected by coma and the only distortions visible are in the halos around the center, where they stretch the more the points are closed to the borders, but the points themselves remain perfectly circular. This is not uncommon for lenses with such moderate maximum apertures.

Flare

I shot a building in construction in front of me, with the sun sneaking from a window, to see if I could see any flare vestiges. I started to shoot directly against the sun, then placed the sun at the corner and finally made some shots with the sun just outside the frame.

Shot directly against the sun.
Shot with the sun placed at one corner of the frame.
Shot with the sun just outside the frame.

The images are not much affected in all situations, which shows that the lens has good resistance to flare keeping contrast on a high level. The worst case is when the sun is placed at one corner, where the multiple internal reflections of light may be noticeable in the opposite corner.

Bokeh

Thanks to the 9 aperture blades, we can expect circular out of focus highlights from this lens. I took a defocused picture at the widest aperture of the city lights and got crops of the center, corner and extreme corners. The test was repeated for the subsequent two stops.

70mm

300mm

The bokeh from this lens is perfectly circular at the center and suffers from the cats eye distortion due to vignetting in the corners and more so in the extremes. The out of focus highlights are rather nervous on the inside at 70mm but get perfectly smooth at 300mm, and the edges aren’t much accentuated, resulting in smooth transitions and backgrounds that are soft and not distracting at the longest focal length. All in all, the lens has good bokeh characteristics which are amongst the best in its class, especially when we take the moderate apertures involved into account.

Macro/Close-up

The Tamron was capable to focus as close as 144 centimeters from the sensor plane, which means 125 centimeters from the front element, resulting in a maximum magnification raio of only 1:4 at 300mm. I shot an 1 Euro coin and this is what to expect at the minimum focus distance:

70mm

300mm

Image stabilization

This lens introduced Tamron’s new image stabilization technology, VC (Vibration Compensation), to compensate for unwanted small movements, and it’s advertised as giving an advantage of 4 stops. This means that at 300mm, one can shoot with speeds as slow as 1/20 seconds.
To test it, I shot the back of a street lamp from my window. The first column shows crops of the subject shot with VC off, and the second column shows them with VC on for comparison. Here are the results at 300mm:

It shows to me clearly that the VC works as advertised, resulting in sharp images at 1/20 seconds. Of course, one has to build some technique to hold the camera and lens steady, so that the benefits of this technology can be applied. The image taken at 1/20 is a little softer but due to diffraction (an aperture of f/32 was used).
Contrary to Nikon’s VR mechanism where 2 axis (up and down) are used, VC used 3 axis: up, down and yaw (up-left, down-right) to compensate for diagonal shakes. One more difference to VR is that VC appears to work with full power right from the moment you press the shutter button halfway, and stays there moments after the picture is taken. VR works with less power and only commutes to full power when you press the shutter button down to take the picture. This is the reason why the images in the viewfinder are almost static with VC, when compared to what is visible with VR. This doesn’t mean that VR is much worse, because it’s not, but I found VC to give me more keepers. And it works as advertised, which is amazing.

Summary

Build quality 7 Mostly high quality plastic but all parts are tight together
Handling 7 Nice feel overall with silent and fast AF in most situations, the zoom ring could be damped for smoother operation
Resolution 7 Very good center sharpness, good corners and acceptable extreme corners in most apertures, amongst the best in class
Distortion 9 A little pincushion distortion but not noticeable in everyday shots
Vignetting 8 Strong at biggest apertures, negligible afterwards (not considering the variations in exposure)
Chromatic aberrations 9 Rarely visible, if any only at 70mm at the widest apertures
Coma 9 Not perfect, but the lens almost doesn’t have issues here
Flare 8 May produce some flare in harsh conditions, but contrast stays always on a high level
Bokeh 7 Circular but very nervous with accentuated edges at 70mm, but gets pleasantly smooth at 300mm
Overall 79% Very good lens on DX and FX, a valuable lens if you need stabilization and can’t afford any of the 70-200mm offerings

Samples

Here are some samples of pictures I made with this lens. Settings: native JPEG, picture control set to Landscape mode, no post-processing applied except reducing to 600 pixel width.

300mm, f/5.6, 1/125s, ISO 200
300mm, f/11, 1/160s, ISO 200
70mm, f/4.0, 1/1600s, ISO 200
70mm, f/4.0, 1/2000s, ISO 200, -0.7 EV
270mm, f/5.6, 1/1250s, ISO 200
70mm, f/11, 1/320s, ISO 200
100mm, f/4.2, 1/1250s, ISO 200